TARIFS

ABLE 2 Phase A						Phase B		Phase C	
d, A	hkl	1/11	d, Å	hkl	1/11	d, Å	I/I ₁	d,Å	I/I_1
6.48 5.86 3.99 3.87 3.461 3.314 3.223 2.986 2.738 2.592 2.524 2.455 2.328 2.257 2.151 2.116 1.938 1.877 1.841	011 002 112 200 021 013,120 121 022 122 004 014 114 031 130 024 132 015 230.033 231 224 040 140.233 042	4 7 23 3 2 20 20 20 20 20 23 3 17 5 35 1 9 42 5 1 1 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,790 1,744 1,737 1,697 1,615 1,580 1,550 1,537 1,525 1,503 1,490 1,472 1,460 1,440 1,398 1,371 1,353 1,331 1,290	142 332 240.332 143.135 044 243,144 334 150 342 244 153 008 343.335 252 344.440 253.154 336.442	16 17 12 12 12 12 12 2 2 2 2 2 8 2 2 3 10 10 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	6.45 5.79 5.28 4.57 3.87 3.77 3.71 3.62 3.51 3.44 3.335 3.234 3.038 3.000 2.903 2.763 2.578 2.327 2.117 2.166 2.010 1.958 1.872	70 5 40 20 40 20 30 80 90 100 60 50 90 15 40 55 40 55 55 55 55	4.31 4.21 4.17 3.97 3.358 3.302 3.227 3.175 2.978 2.747 2.592 2.508 2.453 2.453 2.436 2.392 2.332 2.281 2.243 2.222 2.193 2.085 2.032 1.834 1.787	20 30 25 50 100 25 50 50 50 22 22 10 22 11 22 22 11 22 22 22 11 22 22 22 22

[9], condensation of SiO_4 tetrahedra led to formation of an $[Si_4O_{10}]_{\infty}$ network. It has been hypothesized that the structure of $Ba_2Si_3O_8$ contains complex chains [10], while an (Si_3O_9) ring is expected in the α -BaSiO₃ structure by analogy with SrGeO₃ [11].

The phase transition under investigation was determined from the change in the BaO/H2O ratio, but there is no doubt that phase formation in the BaO-SiO2-H2O system at BaO/H2O = const also depends on the BaO/SiO2 ratio. Thus, when the silica content of the charge was reduced, both carbonite (BaSi₂O₅) and Ba₂Si₃O₈ crystallized (experiments 1-3). An excess of barium oxide led to formation of α -BaSiO₃ (experiments 4 and 7), while a further increase in the amount of BaO caused crystallization of a previously unknown barium silicate, the A phase (experiment 17). Detailed morphological and x-ray diffraction analyses (Table 2) made it possible to detect two additional "new" phases among the crystalline synthetic products: phase B (experiment 5) and phase C (experiments 6, 8, 9, 13, and 14). Single crystals of Ba2TiSi2O8 were found in the titanium-lined autoclaves [12].

Experimental x-ray data for these phases were obtained from their Laue powder patterns, oscillatory diffraction patterns, and layer-line scanning patterns (using a KFOR chamber with Mo radiation). The unit-cell parameters were determined more precisely in a DRON-1 diffractometer (MoCu radia-

tion). The x-ray diffraction analysis was made in a URS-50IM apparatus (CuKα radiation). The faceted single crystals were measured in a GD-1 optical goniometer. The crystal arrangement was the same as for the x-ray analysis. The density of phase A was determined by hydrostatic weighing and its optical constants by focal screening. Table 2 gives the interplanar distances for the new phases, which are briefly described below.

Phase A: $5\text{BaO} \cdot 4\text{SiO}_2 \cdot 1.2\text{H}_2\text{O}.^1$ Short, transparent, colorless prismatic crystals. Tetragonal habit. Lattice constants: $a = 7.745 \pm 0.006$ Å, c = 11.680 ± 0.006 Å, Z = 2. Possible Fedorov groups: P4/mnc, P4nc; $\rho_e = 4.64 \pm 0.02$ g/cm³, ρ_x ray = 4.84 ± 0.03 g/cm³. Crystals uniaxial, positive; refractive indices $n_e = 1.744 \pm 0.002$ and $n_o = 1.730 \pm 0.002$. Basic forms: well-developed $\{100\}$ and $\{110\}$ tetragonal prisms and $\{203\}$ and $\{111\}$ tetragonal bipyramids; $\{120\}$ ditrigonal prism and pinacoid less characteristic (Fig. 1a). Phase A is also characterized by a certain number of twins.

Phase B. Composition unknown; individual crystals in prismatic system (Fig. 1b), rhombic habit. Lattice constants: $a = 13.048 \pm 0.005$ Å, $b = 15.644 \pm 0.006$, $c = 7.203 \pm 0.003$ Å. Fedorov group A2₁22. Refractive indices: $n_p = 1.585 \pm 0.003$, $n_g = 1.597 \pm 0.003$.

The chemical analysis was performed by V.S. Bykova.